Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tambov University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Количество мультипликативных операций при подборе весовых коэффициентов искусственной нейронной сети

Количество мультипликативных операций при подборе весовых коэффициентов искусственной нейронной сети

Abstract

Производится оценка количества мультипликативных и аддитивных операций, необходимых для обучения искусственных нейронных сетей последовательными и параллельными алгоритмами. В качестве нейросетевых структур использованы многослойный персептрон, сеть Вольтерри и сеть каскадной корреляции Фальмана. В качестве методов подбора весовых коэффициентов использованы метод полного сканирования и некоторые градиентные методы – метод наискорейшего спуска, QuickProp и RPROP.

The estimation of quantity of the multiplicative and additive operations necessary for training of artificial neural networks by consecutive and parallel algorithms is made. As neuro-network structures the multilayer perseptron, Volterry structure and network of cascade correlation of Falmana were used. As methods of weights coefficients the method of full scanning and some gradients methods – a method of the quickest descent, QuickProp and RPROP were used.

Keywords

ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ, ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ, ОЦЕНКА ЭФФЕКТИВНОСТИ АЛГОРИТМОВ, КЛАСТЕРНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze