
In this paper we study the operator equation with a linear surjective operator A; which may be not closed, but posesses continuous mapping of right inverse mapping. We are interested in the existence of solutions and topological dimension of the set of solutions.
В настоящей статье изучается операторное уравнение с линейным сюрьективным оператором A; который может быть не замкнутым, но обладает непрерывным правым обратным отображением. Нас интересует существование решений и топологическая размерность множества решений.
КВАЗИОБРАТИМЫЙ ОПЕРАТОР, СЮРЬЕКТИВНЫЙ ОПЕРАТОР, ТОПОЛОГИЧЕСКАЯ СТЕПЕНЬ ОТОБРАЖЕНИЯ
КВАЗИОБРАТИМЫЙ ОПЕРАТОР, СЮРЬЕКТИВНЫЙ ОПЕРАТОР, ТОПОЛОГИЧЕСКАЯ СТЕПЕНЬ ОТОБРАЖЕНИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
