Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия высших учеб...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Приближенное решение нелинейных гиперсингулярных интегральных уравнений

Приближенное решение нелинейных гиперсингулярных интегральных уравнений

Abstract

Background. Approximate methods for solving hypersingular integral equations are an actively developing section of calculus mathematics owing to numerous applications of hypersingular integral equations in mechanics, aerodynamics, electrodynamics, geophysics. Here it is necessary to mention two important circumstances: 1) analytical solution of hypersingular integral equations is possible only in exceptional cases; 2) application range of hypersingular integral equations is constantly growing. These prove the relevance of building and substantiating numerical methods for solving hypersingular integral equations. At the present time the methods of approximate solution of nonlinear hypersingular integral equations remain undeveloped. The article is devoted to building and substantiating an approximate solution of one class of nonlinear hypersingular integral equations by the method of collocations. Materials and methods. Substantiation of solvability and convergence of the method of collocations to the approximate solution of one class of nonlinear hypersingular integral equations, determined on closed loops, is based on application of methods of functional analysis and approximation theory. Results. The authors suggested and substantiated the method of collocations for the approximate solution of nonlinear hypersingular integral equations, determined on closed loops. The article includes the estimates of convergence rate and extent of error. Conclusions. The authors built a computing circuit allowing to effectively calculate applied problems of mechanics, aerodynamics, electrodynamics, geophysics.

Актуальность и цель. Приближенные методы решения гиперсингулярных интегральных уравнений являются активно развивающимся направлением вычислительной математики, что в первую очередь связано с многочисленными приложениями гиперсингулярных интегральных уравнений к механике, аэродинамике, электродинамике, геофизике. При этом следует отметить два обстоятельства: 1) аналитическое решение гиперсингулярных интегральных уравнений возможно лишь в исключительных случаях; 2) спектр приложений гиперсингулярных интегральных уравнений постоянно расширяется. Этим обусловлена актуальность построения и обоснования численных методов решения гиперсингулярных интегральных уравнений. В настоящее время остались не разработанными методы приближенного решения нелинейных гиперсингулярных интегральных уравнений. Статья посвящена построению и обоснованию приближенного решения одного класса нелинейных гиперсингулярных интегральных уравнений методом коллокаций. Материалы и методы. Обоснование разрешимости и сходимости метода коллокаций к приближенному решению одного класса нелинейных гиперсингулярных интегральных уравнений, определенных на замкнутых контурах, основано на применении методов функционального анализа и теории приближений. Результаты. Предложен и обоснован метод коллокаций для приближенного решения нелинейных гиперсингулярных интегральных уравнений, определенных на замкнутых контурах. Приведены оценки быстроты сходимости и величины погрешности. Выводы. Построена вычислительная схема, позволяющая эффективно решать прикладные задачи механики, аэродинамики, электродинамики, геофизики.

Keywords

НЕЛИНЕЙНЫЕ ГИПЕРСИНГУЛЯРНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ, МЕТОД КОЛЛОКАЦИЙ, МЕТОД НЬЮТОНА КАНТОРОВИЧА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold