
The problem of forecasting of a power consumption of the large industrial enterprise for the purpose of minimization of the additional expenses connected with a shortage and search of capacity is considered. For forecast construction are used models of neural networks and the models constructed by a SSA-method. Conclusions become and recommendations are made.
Рассматривается проблема прогнозирования электропотребления крупного промышленного предприятия с целью минимизации дополнительных расходов, связанных с недобором и перебором мощности. Для построения прогноза используются нейросетевые модели и модели, построенные методом «Гусеница»-SSA (Singular Spectrum Analysis). Делаются выводы и даются рекомендации.
ЭЛЕКТРОПОТРЕБЛЕНИЕ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ, ПРОГНОЗ ЭЛЕКТРОПОТРЕБЛЕНИЯ, ПРОГНОЗ НА ОСНОВЕ НЕЙРОСЕТЕВОЙ МОДЕЛИ, МЕТОД "ГУСЕНИЦА"-SSA, АНАЛИЗ И ПРОГНОЗ ВРЕМЕННЫХ РЯДОВ
ЭЛЕКТРОПОТРЕБЛЕНИЕ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ, ПРОГНОЗ ЭЛЕКТРОПОТРЕБЛЕНИЯ, ПРОГНОЗ НА ОСНОВЕ НЕЙРОСЕТЕВОЙ МОДЕЛИ, МЕТОД "ГУСЕНИЦА"-SSA, АНАЛИЗ И ПРОГНОЗ ВРЕМЕННЫХ РЯДОВ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
