Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Применение нечеткого моделирования к прогнозированию количества абитуриентов

Применение нечеткого моделирования к прогнозированию количества абитуриентов

Abstract

Работа посвящена моделям нечетких процессов для прогнозирования количества абитуриентов. Данная проблема актуальна и имеет важное значение, так как от ее адекватного решения зависит объем финансирования вуза. Существует много подходов прогнозирования количества абитуриентов. Однако, временные ряды, содержащие сведения о поступающих в вуз, как правило, характеризуются небольшой длиной, нестационарностью поведения, что затрудняет построение статистических моделей и моделей на основе искусственных нейронных сетей для целей прогноза. Также, традиционные модели не могут быть применены, когда исторические данные являются лингвистическими значениями. Нечеткие временные ряды являются эффективным инструментом для решения таких проблем. В качестве приложения нечетких временных рядов приводится пример прогнозирования абитуриентов из Университета Алабамы.

The paper is devoted to models of fuzzy processes for forecasting of number of entrants. This problem is actual and is important, as the university financing depends on its adequate decision. There have been a good many methods to forecast university enrollments in the literature. However, the enrollments time series, as a usually, are short and nonstationary, that complicates creation of statistical models and models on the basis of artificial neural networks. Also, traditional models can't be applied, when historical data are linguistic values. Fuzzy time series is an effective tool to deal with such problems. In this paper, as an application of fuzzy time series in educational research, the forecast of the enrollments of the University of Alabama is carried out.

Keywords

НЕЧЕТКИЕ ВРЕМЕННЫЕ РЯДЫ, ПРОГНОЗИРОВАНИЕ, НЕЧЕТКИЕ ПРОЦЕССЫ С НЕЧЕТКИМИ ПРИРАЩЕНИЯМИ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Beta
sdg_colorsSDGs:
Related to Research communities