Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik Volgogradsko...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Об алгоритмах численного расчета спектров поглощения неравновесных молекулярных систем

Об алгоритмах численного расчета спектров поглощения неравновесных молекулярных систем

Abstract

This study relates to computational aspects of computer simulations of ultrafast photochemical reactions in donor-acceptor molecular systems, placed in a polar solvent. The emphasis is put on development of algorithms, that can be employed for calculations of transient absorption spectra, detected on the molecular system in the course of photochemical reaction. These algorithms can be used both for the analysis of experimental data, received by means of femtosecond pump-probe spectroscopy, and for the numerical studies on kinetics of ultrafast chemical reactions in nonequilibrium molecular systems. Within the resonant approximation, analytic expressions for the absorption spectrum of a molecular system interacting with a short laser probe pulse are derived. Two particular cases without any spectral broadening and with the gaussian line shape are considered. Computational schemes, compartible with the recrossing algorithms for multistage photochemical reactions simulations, are proposed for each of these cases. Computational complexities of the corresponding schemes are estimated. It is shown, that the efficiency of calculations can be considerably increased by means of simple optimization procedures. These procedures involve precalculation and storing in RAM the spectral profiles of the donor-acceptor system along the solvent energetic coordinate. The effect of such optimization is estimated for typical molecular systems.

В рамках резонансного приближения получены выражения для спектра поглощения фотохимической молекулярной системы, взаимодействующей с коротким зондирующим лазерным импульсом. Рассмотрены схемы численного расчета спектров, адаптированные для использования с рекроссинг-алгоритмами численного моделирования кинетики многостадийных фотохимических реакций. Предложены процедуры оптимизации расчетов, способные существенно повысить производительность вычислений в рамках предложенных схем.

Keywords

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ХИМИИ, БРОУНОВСКОЕ МОДЕЛИРОВАНИЕ, СПЕКТРАЛЬНАЯ ДИНАМИКА, ФЕМТОСЕКУНДНАЯ СПЕКТРОСКОПИЯ НАКАЧКИ ЗОНДИРОВАНИЯ, НЕРАВНОВЕСНЫЕ ФОТОХИМИЧЕСКИЕ СИСТЕМЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities