
В этой статье мы описываем энергосберегающие онлайн-расписания вычислительных задач и механизмы повышения энергоэффективности с учитом конфликтов использования ресурсов. Мы предлагаем модель оптимизации и новый подход к распределению задач, принимая во внимание типы приложений. Разнородные задачи, решаемые на процессорах, включают в себя приложения, интенсивно использующие процессоры, диски, устройства ввода-вывода, память, сети и т.д. Когда задачам одного типа назначается один и тот же ресурс, они могут создать конфликты при использовании CPU, памяти, диска или сети. Это может привести к деградации производительности системы и увеличению потребления энергии. Мы рассматриваем энергетические характеристики приложений и показываем, что умные стратегии распределения задач могут дополнительно улучшить энергопотребление по сравнению с традиционными подходами. Мы предлагаем алгоритмы консолидации разнородных задач и показываем их эффективность на реальных данных в различных сценариях, используя CloudSim для моделирования облачных вычислений. Мы анализируем несколько алгоритмов планирования в зависимости от типа и объема информации, который они используют.
In this paper, we address power aware online scheduling of jobs with resource contention. We propose an optimization model and present new approach to resource allocation with job concentration taking into account types of applications. Heterogeneous workloads include CPU intensive, disk I/O intensive, memory intensive, network I/O intensive and other applications. When jobs of one type are allocated to the same resource, they may create a bottleneck and resource contention either in CPU, memory, disk or network. It may result in degradation of the system performance and increasing energy consumption. We focus on energy characteristics of applications, and show that an intelligent allocation strategy can further improve energy consumption compared with traditional approaches. We propose heterogeneous job consolidation algorithms and validate them by conducting a performance evaluation study using the CloudSim toolkit under different scenarios and real data. We analyze several scheduling algorithms depending on the type and amount of information they require.
ЭНЕРГОСБЕРЕГАЮЩИЕ АЛГОРИТМЫ,ТИПЫ ПРИЛОЖЕНИЙ,КОНФЛИКТЫ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ,КОМПЬЮТЕРНЫЕ РАСПИСАНИЯ,ENERGY EFFICIENCY,TYPE OF APPLICATIONS,RESOURCE CONTENTION,SCHEDULING
ЭНЕРГОСБЕРЕГАЮЩИЕ АЛГОРИТМЫ,ТИПЫ ПРИЛОЖЕНИЙ,КОНФЛИКТЫ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ,КОМПЬЮТЕРНЫЕ РАСПИСАНИЯ,ENERGY EFFICIENCY,TYPE OF APPLICATIONS,RESOURCE CONTENTION,SCHEDULING
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
