Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия высших учеб...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Создание и эффективность автоматической системы шариковой очистки конденсатора 180-кцс-1 турбины Т-180/210-130-1 ЛМЗ часть 2

Создание и эффективность автоматической системы шариковой очистки конденсатора 180-кцс-1 турбины Т-180/210-130-1 ЛМЗ часть 2

Abstract

The authors elaborate the economical efficiency evaluation technique that could be universal and applied for technical-and-economic feasibility study of the ball-cleaning system installation on the steam turbines of the electric power plants. Besides the effect from reducing the exhaust steam pressure in the condenser by means of the ball-cleaning system implementation, this technique also accounts for the effect of lowering the condenser hydraulic pressure. The article refers to the practical results of the ball-cleaning system introduction on the steam turbines of Gomel CHP-2. As a result of regular application of the ball-cleaning system the temperature difference of the condensers of all blocks T-180/210-130-1 confined into the regulatory values and the cleanness coefficient of all three turbine units reached 0,85. The authors consider the working results, implementation experience of the ball-cleaning system at Gomel CHP-2 and its efficiency evaluation technique to be worth disseminating when introducing the analogous systems at the plants of Belarusian power network. The authors suggest measures on the condenser automatic-cleaning system improvement with the turbine mathematical-simulation model employment that will make it possible to optimize the condenser cleaning regimes and to increase the ball-cleaning system effectiveness with the condenser cleanness coefficient growing up to 0,90-0,92.

Разработана методика расчета экономической эффективности, которая может быть универсальной и использоваться для технико-экономического обоснования установки системы шариковой очистки конденсатора на паровых турбинах электростанций. Данная методика, кроме эффекта от снижения давления отработавшего пара в конденсаторе за счет внедрения системы шариковой очистки, учитывает также эффект от уменьшения гидравлического сопротивления конденсатора. Приведены практические результаты внедрения системы шариковой очистки на паровых турбинах Гомельской ТЭЦ-2. Как результат регулярное применение системы шариковой очистки позволило довести температурные напоры конденсаторов всех блоков турбоагрегата Т-180/210-130-1 до нормативных величин и коэффициент чистоты до 0,85 на всех трех турбоагрегатах. Результаты работы, опыт внедрения автоматической системы шариковой очистки на Гомельской ТЭЦ-2 и методика расчета ее эффективности могут быть распространены при внедрении аналогичных систем на электростанциях Белорусской энергосистемы. Предложены мероприятия по совершенствованию автоматической системы шариковой очистки конденсатора с использованием математической модели турбины, которые позволят оптимизировать режимы очистки конденсаторов и повысить эффективность работы системы шариковой очистки с увеличением коэффициента чистоты конденсатора до 0,90-0,92.

Keywords

КОНДЕНСАТОР ПАРОВОЙ ТУРБИНЫ,СИСТЕМА ШАРИКОВОЙ ОЧИСТКИ,ТЕМПЕРАТУРНЫЙ НАПОР,ДАВЛЕНИЕ ОТРАБОТАВШЕГО ПАРА,ВАКУУМ,ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ КОНДЕНСАТОРА,ЭКОНОМИЧЕСКИЙ ЭФФЕКТ,СРОК ОКУПАЕМОСТИ,МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ТУРБИНЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities