Powered by OpenAIRE graph
Found an issue? Give us feedback

Многокомпонентная модель обучения и ее использование для исследования дидактических систем

Многокомпонентная модель обучения и ее использование для исследования дидактических систем

Abstract

In computer simulation of the learning process is usually assumed that all elements of the training material are assimilated equally durable. But in practice, the knowledge, which a student uses in its operations, are remembered much better. For a more precise study of didactic systems the multi–component model of learning are proposed. It takes into account: 1) the transition of «weak» knowledge in «trustworthy» knowledge; 2) the difference in the rate of forgetting the «trustworthy» and «weak» knowledge. It is assumed that the rate of increase of student’s knowledge is proportional to: 1) the difference between the level of the requirements of teachers and the number of learned knowledge; 2) the amount of learned knowledge, raised to some power. Examples of the use of a multi–component model for the study of situations in the learning process are considered, the resulting graphs of the student’s level of knowledge of the time are presented. A generalized model of learning, which allows to take into account the complexity of the various elements of the educational material are proposed. The possibility of creating a training program for the training of students of pedagogical institutes are considered.

При компьютерном моделировании процесса обучения обычно предполагается, что все элементы учебного материала усваиваются одинаково прочно. Но на практике те знания, которые включены в учебную деятельность ученика, запоминаются значительно прочнее, чем знания, которые он не использует. С целью более точного исследования дидактических систем предложена многокомпонентная модель обучения, учитывающая: 1) переход непрочных знаний в прочные; 2) различие в скорости забывания прочных и непрочных знаний. Предполагается, что скорость увеличения знаний ученика пропорциональна: 1) разности между уровнем требований учителя и количеством усвоенных знаний; 2) количеству усвоенных знаний, возведенному в некоторую степень. Рассмотрены примеры использования многокомпонентной модели для изучения ситуаций, возникающих в процессе обучения, представлены получающиеся графики зависимости уровня знаний учащегося от времени. Предложена обобщенная модель обучения, позволяющая учесть сложность различных элементов учебного материала. Рассмотрена возможность создания обучающей программы для тренировки студентов педвузов.

Keywords

ДИДАКТИКА, ИНФОРМАЦИОННО-КИБЕРНЕТИЧЕСКИЙ ПОДХОД, КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ОБУЧЕНИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Beta
sdg_colorsSDGs: