Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Интернет-журнал Наук...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Сравнение методов вычисления интегралов от быстро осциллирующих функций

Сравнение методов вычисления интегралов от быстро осциллирующих функций

Abstract

В статье рассмотрены варианты численных методов интегрирования быстро осциллирующих функций. Задачи, сводящиеся к интегрированию таких функций, возникают во многих приложениях. В последние годы появились оригинальные методы, позволяющие перейти от интегрирования осциллирующих функций к восстановлению первообразной функции и вычислении искомого интеграла с их помощью. Оказалось, что задача может решаться весьма эффективно, причем, чем сильнее осцилляции, тем более точным получается результат интегрирования. Для отыскания первообразной осуществляется переход к решению системы обыкновенных дифференциальных уравнений (ОДУ) без граничных условий на интервале интегрирования. В работе исследованы известные методы, основанные на подходах, предложенных Филоном и Левиным. Предложены варианты построения матриц дифференцирования, приводящие к возможности устойчиво решать получающиеся системы линейных алгебраических уравнений с последующим вычислением интегралов от быстро осциллирующих функций. Преимущества предложенных методов продемонстрированы на ряде численных примеров.

In this article numerical methods of calculating oscillatory integrals are presented. The tasks, which are reduced to integration of such functions, arise in many appendices. In recent years new methods appeared, allowing changing the task from integration of oscillating functions to restoration of primitive function and calculation of required integral with their help. It appeared that the problem could be solved very effectively, and, the stronger are the oscillation, the more accurate is the result. To obtain the antiderivative, a transition to the system of the ordinary differential equations (ODE) without boundary conditions on an integration interval is carried out. In this work the known methods based on the approaches offered by Fillon and Levin are investigated. The work overviews proposed algorithms for creating differentiation matrices, leading to opportunity of steadily solving the linear algebraic equations with the subsequent calculation of oscillatory integrals. Advantages of the offered methods are shown on a number of numerical examples.

Keywords

ОСЦИЛЛИРУЮЩИЕ ФУНКЦИИ,ИНТЕГРАЛЫ ОТ БЫСТРО ОСЦИЛЛИРУЮЩИХ ФУНКЦИЙ,МЕТОД КОЛЛОКАЦИИ ЛЕВИНА,LU РАЗЛОЖЕНИЕ,СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ,ПОЛИНОМЫ ЧЕБЫШЕВА,МАТРИЦА ДИФФЕРЕНЦИРОВАНИЯ,УЗЛЫ ГАУССА-ЛОБАТТО,УСТОЙЧИВЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ,OSCILLATORY FUNCTIONS,OSCILLATORY INTEGRALS,COLLOCATION METHOD,LU DECOMPOSITION,SINGULAR VALUE DECOMPOSITION,CHEBYSHEV POLYNOMIALS,DIFFERENTIAL MATRIX,GAUSS-LOBATTO NODES,STABLE METHODS OF SOLVING ALGEBRAIC LINEAR SYSTEM OF EQUATIONS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold