
Computational Sustainability is an interdisciplinary field that aims to develop computational and mathematical models and methods for decision making concerning the management and allocation of resources in order to help solve environmental problems. This thesis deals with a broad spectrum of such problems (energy efficiency, water management, limiting greenhouse gas emissions and fuel consumption) giving a contribution towards their solution by means of Logic Programming (LP) and Constraint Programming (CP), declarative paradigms from Artificial Intelligence of proven solidity. The problems described in this thesis were proposed by experts of the respective domains and tested on the real data instances they provided. The results are encouraging and show the aptness of the chosen methodologies and approaches. The overall aim of this work is twofold: both to address real world problems in order to achieve practical results and to get, from the application of LP and CP technologies to complex scenarios, feedback and directions useful for their improvement.
ING-INF/05 Sistemi di elaborazione delle informazioni
ING-INF/05 Sistemi di elaborazione delle informazioni
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
