Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BSU Digital Libraryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Многоуровневые алгоритмы для задач принятия решений прецедентного типа

Многоуровневые алгоритмы для задач принятия решений прецедентного типа

Abstract

In this paper, we considers a special class of precedent-type decision-making problems, which often arise in weakly formalised subject areas. To solve such problems, as a rule, heuristic algorithms are used, which cannot be strictly justified. It is shown that this class of problems can be reduced to a standard problem of pattern recognition with learning. Instead of heuristic algorithms, this allows to use multilevel models that make it possible to improve the accuracy of the solution, and in some cases to justify its correctness. An analysis of different variants for constructing multilevel models is given. A multilevel algorithm for the decision-making problem based on the structuring of information is proposed.

Рассматривается специальный класс задач принятия решений прецедентного типа, которые часто возникают в слабо формализованных предметных областях. Для решения таких задач, как правило, применяются эвристические алгоритмы, которые не могут быть строго обоснованы. Показано, что данный класс задач сводится к стандартной задаче распознавания образов с обучением. Это позволяет вместо эвристических алгоритмов использовать многоуровневые модели, которые дают возможность повысить точность решения, а в некоторых случаях обосновать его правильность. Приведен анализ различных вариантов построения многоуровневых моделей. Предложен многоуровневый алгоритм для задачи принятия решений, основанный на структурировании информации.

Related Organizations
Keywords

ЭБ БГУ::ГРАМАДСКІЯ НАВУКІ::Інфарматыка

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green