Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL UPECarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL UPEC
Conference object . 2025
Data sources: HAL UPEC
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptation de Domaine pour la Détection de Boiterie à partir de Vidéos Non Annotées

Authors: Sadok, Zineb; Kachouri, Rostom; Akil, Mohamed; Ahaitouf, Ali;

Adaptation de Domaine pour la Détection de Boiterie à partir de Vidéos Non Annotées

Abstract

La détection précoce de boiterie est un enjeu crucial pour la santé équine. Bien que traditionnellement fondée sur l'observation humaine, cette tâche reste subjective et dépendante de l'expertise du praticien. L’apprentissage automatique offre des perspectives d’automatisation plus objectives, mais repose sur l’accès à des bases de données annotées, rares et coûteuses à constituer. De plus, les différences visuelles entre les vidéos (éclairage, angle, qualité) rendent difficile la généralisation des modèles d’un contexte à un autre.L'application des GANs et de Cycle-GAN ont prouvé leur efficacité dans de nombreuses tâches d’adaptation de domaine, notamment pour la transformation d’images entre différents contextes visuels. Dans ce travail, nous explorons l’adaptation de domaine comme solution à la problématique de boiterie, en utilisant une architecture LSCycleGAN. Une approche non supervisée pour aligner visuellement des vidéos non annotées (domaine source) avec des vidéos annotées (domaine cible) de chevaux boiteux et non boiteux. Notre approche se décompose en trois étapes : (A) entraînement d’un classifieur sur les données annotées, (B) adaptation des vidéos non annotées vers le domaine cible, et (C) classification des vidéos adaptées.Les premiers résultats montrent que l’adaptation permet de réduire efficacement les écarts visuels entre les domaines, préparant ainsi le terrain pour une future classification automatique à partir de vidéos non annotées capturées en conditions réelles.

Keywords

Vidéo non annotées, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Anomalies locomotrices, Least Squares Cycle-GAN., [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Adaptation de domaine, Boiterie, [INFO] Computer Science [cs]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!