
ABSTRAK. Data volume kendaraan yang masuk ke Kota Bandungmelalui gerbang tol yang berada di Kota Bandung adalah data runtun waktumultivariate berpola musiman. Untuk memperoleh prediksi volumekendaraan yang masuk melalui gerbang tol dimasa yang akan datangdibutuhkan suatu model peramalan. Salah satu model runtun waktumultivariat yang menghubungkan keterkaitan antara waktu dan lokasi,dimana data runtun waktu tersebut berpola musiman adalah model VectorAutoregressive-Generalized Space Time Autoregressive (VAR-GSTAR).Model ini terdiri dari 2 orde yaitu orde waktu yang diperoleh dari modelVAR dan orde spasial yang diperoleh dari model GSTAR. Keterkaitanantar ruang pada model ini ditunjukkan dengan pembobotan lokasi. Dalampenelitian ini digunakan bobot lokasi normalisasi korelasi silang. Hasilramalan yang diperoleh dari model VAR-GSTAR pada data volumekendaraan yang masuk ke Kota Bandung melalui gerbang tol yang beradadi Kota Bandung adalah mengikuti pola data yang sebelumnya, yaituberfluktuasi dengan kecenderungan yang naik.Kata Kunci: VAR-GSTAR, Bobot lokasi normalisasi korelasi silang,Peramalan.ABSTRACT. Volume of vehicles coming into the city of Bandung throughtoll gates in the city of Bandung is the seasonal multivariate time seriesdata. To obtain a prediction volume of vehicles that go through the tollbooths in the future requires a forecasting model. One of modelmultivariate time series that connects between the time and the location,where the data of the time series data is seasonally namely VectorAutoregressive-Generalized Space Time Autoregressive (VAR-GSTAR)models. This model has two orders, the order of the time obtained from theVAR model and order the space obtained from GSTAR. connectionbetween the space on this model is indicated by the weighting of thelocation. This research used a weight normalized cross correlation.Forecast results obtained from the VAR-GSTAR model on the data volumeof vehicles coming into the city of Bandung through toll gates in the cityof Bandung is to follow the pattern of previous data, which fluctuates withrising tendency.Keywords: VAR-GSTAR, Weights location normalized cross correlation,Forecasting.
Mathematics, Statistics
Mathematics, Statistics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
