Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ G3: Genes, Genomes, ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
G3: Genes, Genomes, Genetics
Article . 2017 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
G3: Genes, Genomes, Genetics
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
G3: Genes, Genomes, Genetics
Article . 2017
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat

Authors: Kruse, Erika B; Carle, Scott W; Wen, Nuan; Skinner, Daniel Z; Murray, Timothy D; Garland-Campbell, Kimberly A; Carter, Arron H;

Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat

Abstract

Abstract Plants grown through the winter are subject to selective pressures that vary with each year’s unique conditions, necessitating tolerance of numerous abiotic and biotic stress factors. The objective of this study was to identify molecular markers in winter wheat (Triticum aestivum L.) associated with tolerance of two of these stresses, freezing temperatures and snow mold—a fungal disease complex active under snow cover. A population of 155 F2:5 recombinant inbred lines from a cross between soft white wheat cultivars “Finch” and “Eltan” was evaluated for snow mold tolerance in the field, and for freezing tolerance under controlled conditions. A total of 663 molecular markers was used to construct a genetic linkage map and identify marker-trait associations. One quantitative trait locus (QTL) associated with both freezing and snow mold tolerance was identified on chromosome 5A. A second, distinct, QTL associated with freezing tolerance also was found on 5A, and a third on 4B. A second QTL associated with snow mold tolerance was identified on chromosome 6B. The QTL on 5A associated with both traits was closely linked with the Fr-A2 (Frost-Resistance A2) locus; its significant association with both traits may have resulted from pleiotropic effects, or from greater low temperature tolerance enabling the plants to better defend against snow mold pathogens. The QTL on 4B associated with freezing tolerance, and the QTL on 6B associated with snow mold tolerance have not been reported previously, and may be useful in the identification of sources of tolerance for these traits.

Keywords

QTL mapping, Genetic Markers, Plant Diseases - genetics, Quantitative Trait Loci, Triticum aestivum, QH426-470, Investigations, Stress, 630, Stress, Physiological, Freezing, Genetics, snow mold tolerance, Triticum - microbiology, Quantitative Trait Loci - genetics, Adaptation, Triticum, Plant Diseases, Haplotypes - genetics, Physiological - genetics, Genome, Fungi, Plant, Triticum - genetics, Fungi - physiology, freezing tolerance, Adaptation, Physiological, Haplotypes, Triticum - physiology, Seasons, Genome, Plant

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Green
gold