Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food Additives & Con...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Food Additives & Contaminants Part A
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2024
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polychlorinated dibenzo- p -dioxin and dibenzofuran contamination of free-range eggs: estimation of the laying hen’s soil ingestion based on a toxicokinetic model, and human consumption recommendations

Authors: Christelle Oltramare; Markus Zennegg; Mélanie Graille; Sylvain Lerch; Aurélie Berthet; David Vernez;

Polychlorinated dibenzo- p -dioxin and dibenzofuran contamination of free-range eggs: estimation of the laying hen’s soil ingestion based on a toxicokinetic model, and human consumption recommendations

Abstract

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are ubiquitous in the environment. The main route of human exposure is through food consumption. Soil contamination can be problematic for sanitary safety depending on the usage of the soil, such as farming. In case of environmental soil contamination with PCDD/Fs, hen’s eggs may be contaminated due to soil ingestion by hens. For this reason, it is important to understand the parameters that influence eggs’ contamination when hens are raised in contaminated areas. After the discovery of a contaminated area in Lausanne (Switzerland), we collected hens’ eggs from ten domestic-produced eggs and one farm. Based on PCDD/F measurements of eggs and soil, and a toxicokinetic model, we estimated individual hen’s soil intake levels and highlighted appropriate parameters to predict the dose ingested. Recommended weekly consumption for home-produced eggs was calculated based on the tolerable weekly intake proposed by EFSA in 2018. The most important parameter to assess the soil ingestion does not seem to be the soil coverage by vegetation but rather the hen’s pecking behaviour, the latter being difficult to estimate objectively. For this reason, we recommend using a realistic soil ingestion interval to assess the distribution of egg PCDD/F concentration from free-range hens reared on contaminated soil. The addition of soil contamination in the toxicokinetic model can then be used to recommend to the general population weekly consumption of eggs. The consumption by adults of free-range eggs produced on land with soil containing >90 ng toxic-equivalent (TEQ)/kg dry soil should be avoided. Even with a low level of soil contamination (1–5 ng TEQ/kg dry soil), we would recommend consuming not more than 5 eggs per week for adults and no more than 2 eggs for children below 4 years old.

Country
Switzerland
Related Organizations
Keywords

Polychlorinated Dibenzodioxins, Eggs, Food Contamination, Toxicokinetics, Animals; Chickens; Eggs/analysis; Food Contamination/analysis; Humans; Polychlorinated Dibenzodioxins/analysis; Female; Soil Pollutants/analysis; Soil/chemistry; Toxicokinetics; Dibenzofurans/analysis; Eating; PCDD/Fs; Soil contamination; food safety; outdoor rearing; risk assessment, Soil, Eating, Animals, Humans, Soil Pollutants, Female, Dibenzofurans, Chickens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid