
pmid: 28738652
A methodology for the determination of volatile compounds in red wine using headspace solid phase microextraction (HS-SPME) combined with gas chromatography-ion trap/ mass spectrometry (GC-IT/MS) and flame ionization detector (GC -FID) was developed, validated and applied to a sample of Brazilian red wine. The optimization strategy was conducted using the Plackett-Burman design for variable selection and central composite rotational design (CCRD). The response surface methodology showed that the performance of the extraction of the volatile compounds using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is improved with no sample dilution, the addition of 30% NaCl, applying an extraction temperature of 56°C and extraction time of 55min. The qualitative method allowed the extraction and identification of 60 volatile compounds in the sample studied, notably the classes of esters, alcohols, and fatty acids. Furthermore, the method was successfully validated for the quantification of 55 volatile compounds of importance in wines and applied to twelve samples of Merlot red wine from South of Brazil. The calculation of the odor activity value (OAV) showed the most important components of the samples aroma. Ethyl isovalerate, ethyl hexanoate, 1-hexanol, octanoic acid and ethyl cinnamate had the greatest contribution to the aroma of the wines analyzed, which is predominantly fruity with the presence of herbal and fatty odors.
Volatile Organic Compounds, Odorants, Wine, Gas Chromatography-Mass Spectrometry, Solid Phase Microextraction
Volatile Organic Compounds, Odorants, Wine, Gas Chromatography-Mass Spectrometry, Solid Phase Microextraction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
