
In response to the growing concern over the use of fossil fuels, renewable energy industries have been significant economic drivers in many parts of the United States. In the recent years there is a strong growth in solar power generation industries that requires prediction of solar energy to develop highly efficient stand-alone photovoltaic systems as well as hybrid power systems. In order to accomplish the goal, we propose a predictive model that is based on recurrent neural networks trained with the Levenberg-Marquardt backpropagation learning algorithm to forecast the solar radiation using the past solar radiation and solar energy. This computational intelligence modeling tool explored the impact of solar radiation and solar energy in forecasting reliable long-run solar energy. Based on the excellent experimental results including the mean squared error analysis, error autocorrelation function analysis, regression analysis, and time series response, it demonstrated that the proposed neural network structure and the learning algorithm could be very useful in training the recurrent neural network for the solar radiation prediction.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
