Downloads provided by UsageCounts
arXiv: 1708.02570
handle: 2117/130730 , 2381/42705
Abstract We show that Schmitt’s restriction species (such as graphs, matroids, posets, etc.) naturally induce decomposition spaces (a.k.a. unital $2$-Segal spaces), and that their associated coalgebras are an instance of the general construction of incidence coalgebras of decomposition spaces. We introduce directed restriction species that subsume Schmitt’s restriction species and also induce decomposition spaces. Whereas ordinary restriction species are presheaves on the category of finite sets and injections, directed restriction species are presheaves on the category of finite posets and convex maps. We also introduce the notion of monoidal (directed) restriction species, which induce monoidal decomposition spaces and hence bialgebras, most often Hopf algebras. Examples of this notion include rooted forests, directed graphs, posets, double posets, and many related structures. A prominent instance of a resulting incidence bialgebra is the Butcher–Connes–Kreimer Hopf algebra of rooted trees. Both ordinary and directed restriction species are shown to be examples of a construction of decomposition spaces from certain cocartesian fibrations over the category of finite ordinals that are also cartesian over convex maps. The proofs rely on some beautiful simplicial combinatorics, where the notion of convexity plays a key role. The methods developed are of independent interest as techniques for constructing decomposition spaces.
18-XX, :18 Category theory [Classificació AMS], :18G Homological algebra [homological algebra], 512, Classificació AMS::18 Category theory, :55 Algebraic topology::55P Homotopy theory [Classificació AMS], ordered algebraic structures::06A Ordered sets, 18G30, Àrees temàtiques de la UPC::Matemàtiques i estadística::Topologia::Topologia algebraica, Classificació AMS::06 Order, FOS: Mathematics, Mathematics - Combinatorics, Algebraic Topology (math.AT), Category Theory (math.CT), :Matemàtiques i estadística::Topologia::Topologia algebraica [Àrees temàtiques de la UPC], Mathematics - Algebraic Topology, homological algebra::18G Homological algebra, :06 Order, lattices, ordered algebraic structures::06A Ordered sets [Classificació AMS], Classificació AMS::18 Category theory; homological algebra::18G Homological algebra, 18G30, 16T10, 06A07, 18-XX, 55Pxx, Classificació AMS::06 Order, lattices, ordered algebraic structures::06A Ordered sets, Classificació AMS::55 Algebraic topology::55P Homotopy theory, Mathematics - Category Theory, Topologia algebraica, lattices, 06A07, 55Pxx, Combinatorics (math.CO), Algebraic topology, 16T10
18-XX, :18 Category theory [Classificació AMS], :18G Homological algebra [homological algebra], 512, Classificació AMS::18 Category theory, :55 Algebraic topology::55P Homotopy theory [Classificació AMS], ordered algebraic structures::06A Ordered sets, 18G30, Àrees temàtiques de la UPC::Matemàtiques i estadística::Topologia::Topologia algebraica, Classificació AMS::06 Order, FOS: Mathematics, Mathematics - Combinatorics, Algebraic Topology (math.AT), Category Theory (math.CT), :Matemàtiques i estadística::Topologia::Topologia algebraica [Àrees temàtiques de la UPC], Mathematics - Algebraic Topology, homological algebra::18G Homological algebra, :06 Order, lattices, ordered algebraic structures::06A Ordered sets [Classificació AMS], Classificació AMS::18 Category theory; homological algebra::18G Homological algebra, 18G30, 16T10, 06A07, 18-XX, 55Pxx, Classificació AMS::06 Order, lattices, ordered algebraic structures::06A Ordered sets, Classificació AMS::55 Algebraic topology::55P Homotopy theory, Mathematics - Category Theory, Topologia algebraica, lattices, 06A07, 55Pxx, Combinatorics (math.CO), Algebraic topology, 16T10
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 39 | |
| downloads | 84 |

Views provided by UsageCounts
Downloads provided by UsageCounts