Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The precoding problem for sparse random linear network coding

Authors: Xiaolin Li; Wai Ho Mow;

The precoding problem for sparse random linear network coding

Abstract

In the random linear network coding scenario with subspace codes applied, if the number of packets injected into the network is larger than the dimension of the subspace, the packets are not linearly independent. This paper addresses the problem of how to choose these packets to represent the subspaces so as to minimize the decoding failure probability and formulates it as a precoding problem. We propose a precoding method based on the generator matrices of a class of the maximum distance separable codes and show that it can minimize the decoding failure probability for a sparse random transfer matrix over a large enough finite field. Our result is obtained by analyzing the rank distribution of finite field random matrices in the large field size limit. As a consequence, it is applied to shed some light on the tradeoff between the maximum achievable sparsity of the transfer matrix and the rate of the subspace code.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!