Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-period stochastic mathematical model for the optimal design of integrated utility and hydrogen supply network under uncertainty in raw material prices

Authors: Soonho Hwangbo; In-Beum Lee; Jeehoon Han;

Multi-period stochastic mathematical model for the optimal design of integrated utility and hydrogen supply network under uncertainty in raw material prices

Abstract

Utility supply networks and hydrogen (H2) supply networks have been consistently individually studied in terms of techno-economic feasibility of large scale. A number of studies have proposed and improved mathematical models for design of each optimized supply network. However, although two different networks can coexist in a large-scale industrial complex, few studies have been conducted to develop an integrated utility supply and H2 supply network (IUHSN) design in a techno-economic optimization framework. In this study, we design an IUHSN which includes a number of utilities (steam, water, and electricity), and H2 sources (manufacturers) and sinks (end customers). Steam methane reforming (SMR) process is used as an intermediate linkage between both networks. To obtain an optimal design of the IUHSN reflecting the reality, we develop a mathematical model which is formulated as multi-period stochastic mixed integer linear programming concerning uncertain raw material prices. This model allows identification of a promising design strategy to minimize total supply cost, because sources and sinks can be connected to each other to transfer unused resources and products.

Related Organizations
Keywords

Optimization, Multi-period, SITE, Facility deployment, HEAT, PERFORMANCE, MULTIOBJECTIVE OPTIMIZATION, Stochastic, ENERGY, SYSTEMS, Mixed integer linear programming, CHAIN, TECHNOLOGY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!