Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering With Com...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering With Computers
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolving reordering algorithms using an ant colony hyperheuristic approach for accelerating the convergence of the ICCG method

Authors: Oliveira, S. L. Gonzaga de; Silva, L. M.;

Evolving reordering algorithms using an ant colony hyperheuristic approach for accelerating the convergence of the ICCG method

Abstract

This paper proposes a novel ant colony hyperheuristic approach for reordering the rows and columns of symmetric positive definite matrices. This ant colony hyperheuristic approach evolves heuristics for bandwidth reduction applied to instances arising from specific application areas with the objective of generating low-cost reordering algorithms. This paper evaluates the resulting reordering algorithm in each application area against state-of-the-art reordering algorithms with the purpose of reducing the running times of the zero-fill incomplete Cholesky-preconditioned conjugate gradient method. The results obtained on a wide-ranging set of standard benchmark matrices show that the proposed approach compares favorably with state-of-the-art reordering algorithms when applied to instances arising from computational fluid dynamics, structural, and thermal problems.

Related Organizations
Keywords

Rotulagem de gráfico, Conjugate gradient method, Graph labeling, Matrizes esparsas, Ant colony optimization, Renumbering, Redução da largura de banda, Método de gradiente conjugado, Otimização de colônia de formigas, Heuristics, Fatoração incompleta de Cholesky, Hiperheurística, Algoritmo gráfico, Algoritmos de reordenação, Profle reduction, Graph algorithm, Hyperheuristic, Bandwidth reduction, Renumeração, Incomplete Cholesky factorization, Sparse matrices, Heurística, Redução de perfil, Reordering algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!