
A new algorithmic framework for sparse channel identification is proposed. Although the focus of this paper is on sparse underwater acoustic channels, this framework can be applied in any field where sequential noisy signal samples are obtained from a linear time-varying system. A suit of new algorithms is derived by minimizing a differentiable cost function that utilizes the underlying Riemannian structure of the channel as well as the L0-norm of the complex-valued channel taps. The sparseness effect of the proposed algorithms is successfully demonstrated by estimating a mobile shallow-water acoustic channel. The clear superiority of the new algorithms over state-of-the-art sparse adaptive algorithms is shown. Moreover, the proposed algorithms are employed by a channel-estimate-based decision-feedback equalizer (CEB DFE). These CEB DFE structures are compared with a direct-adaptation DFE (DA DFE), which is based on sparse and nonsparse adaptation. Our results confirm the improved error-rate performance of the new CEB DFEs when the channel is sparse.
000, underwater acoustic communications, Acoustic echo cancellation, sparse recursive least squares (RLS), {L} 1-RRLS, 510, sparse equalization, proportionate algorithms, improved-proportionate affine projection algorithm (IPAPA), improved- proportionate normalized least mean square (IPNLMS), L0-norm
000, underwater acoustic communications, Acoustic echo cancellation, sparse recursive least squares (RLS), {L} 1-RRLS, 510, sparse equalization, proportionate algorithms, improved-proportionate affine projection algorithm (IPAPA), improved- proportionate normalized least mean square (IPNLMS), L0-norm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
