Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Ocea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Oceanic Engineering
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Sparse Adaptive Algorithms Based on the Natural Gradient and the ${L}_{0}$-Norm

Authors: Pelekanakis, K.; Chitre, M.;

New Sparse Adaptive Algorithms Based on the Natural Gradient and the ${L}_{0}$-Norm

Abstract

A new algorithmic framework for sparse channel identification is proposed. Although the focus of this paper is on sparse underwater acoustic channels, this framework can be applied in any field where sequential noisy signal samples are obtained from a linear time-varying system. A suit of new algorithms is derived by minimizing a differentiable cost function that utilizes the underlying Riemannian structure of the channel as well as the L0-norm of the complex-valued channel taps. The sparseness effect of the proposed algorithms is successfully demonstrated by estimating a mobile shallow-water acoustic channel. The clear superiority of the new algorithms over state-of-the-art sparse adaptive algorithms is shown. Moreover, the proposed algorithms are employed by a channel-estimate-based decision-feedback equalizer (CEB DFE). These CEB DFE structures are compared with a direct-adaptation DFE (DA DFE), which is based on sparse and nonsparse adaptation. Our results confirm the improved error-rate performance of the new CEB DFEs when the channel is sparse.

Country
Singapore
Keywords

000, underwater acoustic communications, Acoustic echo cancellation, sparse recursive least squares (RLS), {L} 1-RRLS, 510, sparse equalization, proportionate algorithms, improved-proportionate affine projection algorithm (IPAPA), improved- proportionate normalized least mean square (IPNLMS), L0-norm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!