Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proactive Optimization of Intelligent-Well Production Using Stochastic Gradient-Based Algorithms

Authors: Morteza Haghighat Sefat; Khafiz M. Muradov; Ahmed H. Elsheikh; David R. Davies;

Proactive Optimization of Intelligent-Well Production Using Stochastic Gradient-Based Algorithms

Abstract

Summary The popularity of intelligent wells (I-wells), which provide layer-by-layer monitoring and control capability of production and injection, is growing. However, the number of available techniques for optimal control of I-wells is limited (Sarma et al. 2006; Alghareeb et al. 2009; Almeida et al. 2010; Grebenkin and Davies 2012). Currently, most of the I-wells that are equipped with interval control valves (ICVs) are operated to enhance the current production and to resolve problems associated with breakthrough of the unfavorable phase. This reactive strategy is unlikely to deliver the long-term optimum production. On the other side, the proactive-control strategy of I-wells, with its ambition to provide the optimum control for the entire well's production life, has the potential to maximize the cumulative oil production. This strategy, however, results in a high-dimensional, nonlinear, and constrained optimization problem. This study provides guidelines on selecting a suitable proactive optimization approach, by use of state-of-the-art stochastic gradient-approximation algorithms. A suitable optimization approach increases the practicality of proactive optimization for real field models under uncertain operational and subsurface conditions. We evaluate the simultaneous-perturbation stochastic approximation (SPSA) method (Spall 1992) and the ensemble-based optimization (EnOpt) method (Chen et al. 2009). In addition, we present a new derivation of the EnOpt by use of the concept of directional derivatives. The numerical results show that both SPSA and EnOpt methods can provide a fast solution to a large-scale and multiple I-well proactive optimization problem. A criterion for tuning the algorithms is proposed and the performance of both methods is compared for several test cases. The used methodology for estimating the gradient is shown to affect the application area of each algorithm. SPSA provides a rough estimate of the gradient and performs better in search environments, characterized by several local optima, especially with a large ensemble size. EnOpt was found to provide a smoother estimation of the gradient, resulting in a more-robust algorithm to the choice of the tuning parameters, and a better performance with a small ensemble size. Moreover, the final optimum operation obtained by EnOpt is smoother. Finally, the obtained criteria are used to perform proactive optimization of ICVs in a real field.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!