Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Geoscien...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Geosciences
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid image classification and parameter selection using a shared memory parallel algorithm

Authors: Rhonda D. Phillips; Layne T. Watson; Randolph H. Wynne;

Hybrid image classification and parameter selection using a shared memory parallel algorithm

Abstract

This work presents a shared memory parallel version of the hybrid classification algorithm IGSCR (iterative guided spectral class rejection) to facilitate the transition from serial to parallel processing. This transition is motivated by a demonstrated need for more computing power driven by the increasing size of remote sensing data sets due to higher resolution sensors, larger study regions, and the like. Parallel IGSCR was developed to produce fast and portable code using Fortran 95, OpenMP, and the Hierarchical Data Format version 5 (HDF5) and accompanying data access library. The intention of this work is to provide an efficient implementation of the established IGSCR classification algorithm. The applicability of the faster parallel IGSCR algorithm is demonstrated by classifying Landsat data covering most of Virginia, USA into forest and non-forest classes with approximately 90% accuracy. Parallel results are given using the SGI Altix 3300 shared memory computer and the SGI Altix 3700 with as many as 64 processors reaching speedups of almost 77. Parallel IGSCR allows an analyst to perform and assess multiple classifications to refine parameters. As an example, parallel IGSCR was used for a factorial analysis consisting of 42 classifications of a 1.2GB image to select the number of initial classes (70) and class purity (70%) used for the remaining two images.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!