Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Broadcasting
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Complexity Decoding Algorithms for the LDM Core Layer at Fixed Receivers in ATSC 3.0

Authors: Sunghye Cho; Youngjun Hwang; Seho Myung; Kyeongcheol Yang;

Low-Complexity Decoding Algorithms for the LDM Core Layer at Fixed Receivers in ATSC 3.0

Abstract

Gallager’s decoding algorithms ${B}$ (GDB) and ${E}$ (GDE) for low-density parity-check codes have much lower computational complexity and much less required memory size than the sum-product algorithm (SPA). This is because GDB and GDE only use binary or integer operations, while the SPA requires real operations and a look-up table. However, they are hardly used in commercial communication systems since they have a worse performance than the SPA. Layered-division multiplexing (LDM) is considered in ATSC 3.0 in order to deliver multiple broadcasting streams with distinct robustness in a single radio frequency channel. Due to the unique characteristic of the LDM, we propose to use GDB or GDE rather than the SPA for decoding the core layer signal at fixed receivers. Numerical results show that the computational complexity and the required memory size can be reduced without any performance loss by about 50 percent and 80 percent, respectively, when GDB and GDE are employed.

Related Organizations
Keywords

imaging agents, solid-state structures, pyrrolo[3.2-b]pyrrole, water-soluble, fluorescence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!