Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Therapeutic Drug Mon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Therapeutic Drug Monitoring
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Therapeutic Drug Monitoring
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Archive ouverte UNIGE
Article . 2018
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Therapeutic Drug Monitoring of Busulfan for the Management of Pediatric Patients: Cross-Validation of Methods and Long-Term Performance

Authors: Choong, Eva; Uppugunduri, Chakradhara Rao Satyanarayana; Marino, Denis; Kuntzinger, Mélanie; Doffey-Lazeyras, Fabienne; Lo Piccolo, Rodolfo; Chalandon, Yves; +3 Authors

Therapeutic Drug Monitoring of Busulfan for the Management of Pediatric Patients: Cross-Validation of Methods and Long-Term Performance

Abstract

Background:Busulfan (Bu) is an alkylating agent used as part of the conditioning regimen in pediatric patients before hematopoietic stem cell transplantation. Despite intravenous (IV) administration and dosing recommendations based on age and weight, reports have revealed interindividual variability in Bu pharmacokinetics and the outcomes of hematopoietic stem cell transplantation. In this context, adjusting doses to Bu's narrow therapeutic window is advised. We aimed to assess the utility of therapeutic drug monitoring (TDM) of Bu in children, the reliability of Bu quantification methods, and its stability in plasma when stored for up to 5 years.Methods:Eighteen patients from our TDM center (252 samples) were included. All of them received a 2-hour Bu IV infusion 4 times daily for a total of 16 doses. The first dose of Bu was age/weight-based, and the subsequent doses were adjusted from third or fifth dose onward based on the estimated first dose pharmacokinetic parameters to target steady-state concentrations (Css) of 600–900 ng/mL. The performance of our unit's high-performance liquid chromatography with tandem mass spectrometry method was assessed using a quality control (QC, 35 series) chart. International, multicenter, cross-validation test (n = 21) was conducted to validate different analytical methods. To assess Bu stability, regression analyses and Bland–Altman plots were performed on measurements at repeated time points on samples stored at −80°C for up to 5 years.Results:We observed a 4.2-fold interindividual variability in Bu Css after the first dose, with only 28% of children having a Css within the target range. During the 4 days of conditioning, 83% of children had their doses modified according to TDM recommendations. This achieved a Css within the target range in 75% of the children. Routine QC measurements were generally within the ±15% range around theoretical values, showing the optimal robustness of our center's analytical method. Two of the 21 Bu TDM centers returned inadequate results during cross-validation testing; both used a UV detection method. Storage at −80°C led to a fall in Bu content of 14.9% ± 13.4% at 2–4 years and of 20% ± 5% by 5 years (r2overall= 0.92).Conclusions:We conclude that TDM is an effective method of achieving targeted Bu levels in children. QC programs are crucial to monitoring and maintaining the quality of an analytical method.

Keywords

Quality Control, Alkylating Agents, Hematopoietic Stem Cell Transplantation/methods, Time Factors, Alkylating Agents/blood/pharmacokinetics, Tandem Mass Spectrometry/methods, 618, Drug Stability, Tandem Mass Spectrometry, 616, 617, Humans, Child, Busulfan, Chromatography, High Pressure Liquid, Dose-Response Relationship, Drug, Hematopoietic Stem Cell Transplantation, Reproducibility of Results, Busulfan/blood/pharmacokinetics, Drug Monitoring, Chromatography, High Pressure Liquid/methods, Drug Monitoring/methods, ddc: ddc:616, ddc: ddc:618, ddc: ddc:617

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green
hybrid