Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Signal Processing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VTechWorks
Article . 2024
License: CC BY
Data sources: VTechWorks
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly Robust Complex Covariance Estimators With Applications to Sensor Array Processing

Authors: Justin A. Fishbone; Lamine Mili;

Highly Robust Complex Covariance Estimators With Applications to Sensor Array Processing

Abstract

Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as $M$-estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate $S$-estimators. The paper extends multivariate $S$-estimation theory to the complex-valued domain. The theoretical performances of $S$-estimators are explored and compared with $M$-estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.

Country
United States
Related Organizations
Keywords

Signal processing, Sq-estimator, covariance and shape matrix estimation, Covariance matrices, TK1-9971, Symmetric matrices, Probability density function, Complex elliptically symmetric distribution, Electrical engineering. Electronics. Nuclear engineering, Robustness, complex-valued S-estimator, Estimation, robust estimation of multivariate location and scatter, Electric breakdown

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Beta
sdg_colorsSDGs:
Related to Research communities