Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the Influence of the Lagrange Multiplier on the Operation of the Algorithm for Estimating the Signal Parameters under a Priori Uncertainty

Authors: Poborchaya, N.E.; Lobov, E.M.;

Analysis of the Influence of the Lagrange Multiplier on the Operation of the Algorithm for Estimating the Signal Parameters under a Priori Uncertainty

Abstract

N.E. Poborchaya1, E.M. Lobov1 1Moscow Technical University of Communications and Informatics, Moscow, Russian Federation E-mail: n.poborchaya@mail.ru, e.m.lobov@mtuci.ru Наталья Евгеньевна Поборчая, доктор технических наук, доцент, доцент кафедры ≪Общая теория связи≫, Московский технический университет связи и информатики (г. Москва, Российская Федерация), n.poborchaya@mail.ru. Евгений Михайлович Лобов, кандидат технических наук, доцент, заведующий лабораторией ≪НИЛ-4803≫, Научно-исследовательская часть, Московский технический университет связи и информатики (г. Москва, Российская Федерация), e.m.lobov@mtuci.ru. The paper considers a recurrent regularizing algorithm for joint estimation of distortions of a M-ary quadrature amplitude modulation (M-QAM) signal obtained in a direct conversion receiver path. The algorithm is synthesized using a modified least squares method in the form of Tikhonov’s functional under conditions of a priori uncertainty about the laws of noise distribution. The resulting procedure can work both on the test sequence and on information symbols after the detection procedure. We analyze the influence of the Lagrange multiplier on the accuracy of the estimation procedure and on the complexity of the algorithm. It is shown that, with the same accuracy, the regularizing algorithm requires significantly fewer iterations than the procedure without the Lagrange multiplier, and therefore has a lower computational complexity. В работе рассматривается рекуррентный регуляризующий алгоритм совместной оценки искажений сигнала многопозиционной квадратурной модуляции (M-QAM), полученных в тракте приемника прямого преобразования. Алгоритм синтезирован с помощью модифицированного метода наименьших квадратов в виде функционала Тихонова в условиях априорной неопределенности относительно законов распределения шумов. Полученная процедура может работать как по тестовой последовательности, так и по информационным символам после процедуры детектирования. Проанализировано влияние множителя Лагранжа на точность процедуры оценивания и на сложность алгоритма. Показано, что при одинаковой точности регуляризующий алгоритм требует существенно меньшее количество итераций, чем процедура без множителя Лагранжа, а значит обладает более низкой вычислительной сложностью.

Keywords

001.895 [УДК 51-77], direct transform receiver, regularizing algorithm, регуляризующий алгоритм, a priori uncertainty, модифицированный метод наименьших квадратов, modified least squares method, приемник прямого преобразования, априорная неопределенность

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold