Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of the Communications Society
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Capacity Performance of Tensor Multi-Domain Communication Systems With Discrete Signalling Constellations

Authors: Divyanshu Pandey; Harry Leib;

Capacity Performance of Tensor Multi-Domain Communication Systems With Discrete Signalling Constellations

Abstract

Modern communication systems employ multi-domain modulation and coding techniques for effectively exploiting all available resources. Hence in such systems the transmit and receive signals have an inherent multi-domain structure which can be represented using tensors. This work considers the capacity of higher order tensor channels associated with such multi-domain communication systems when the elements of the input tensor are constrained to be drawn from discrete signalling constellations. We establish a relationship between the tensor gradient of the mutual information and the error covariance tensor associated with the minimum mean squared error estimator at the receiver. This relation is used to iteratively find a multi-linear precoder at the input which achieves capacity of the tensor channel under the signalling constellation constraints. Through numerical examples, we show the convergence behavior of the proposed precoder, and compare the capacity achieved under different constellations with the capacity when the input is Gaussian. Further, we exploit the tensor formulation of the problem to find the channel capacity under a variety of different power constraints spanning across several domains. At high SNR, the constellation constraints saturate the capacity while at low SNRs, the constellation constraints are not too relevant, and the power constraints dominate and limit the performance. The capacity saturation level depends on the input order and distribution.

Keywords

MMSE tensor estimation, capacity, I-MMSE relation, Telecommunication, Tensor channel, multi-linear precoder, TK5101-6720, Transportation and communications, HE1-9990

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold