Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Public ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Public Health
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Public Health
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of indoor air quality in health clubs: insights into (ultra)fine and coarse particles and gaseous pollutants

Authors: Cátia Peixoto; Cátia Peixoto; Maria do Carmo Pereira; Simone Morais; Klara Slezakova;

Assessment of indoor air quality in health clubs: insights into (ultra)fine and coarse particles and gaseous pollutants

Abstract

IntroductionExercising on regular basis provides countless health benefits. To ensure the health, well-being and performance of athletes, optimal indoor air quality, regular maintenance and ventilation in sport facilities are essential.MethodsThis study assessed the levels of particulate, down to the ultrafine range (PM10, PM2.5, and particle number concentration in size range of 20–1,000 nm, i.e., – PNC20-1000 nm), gaseous pollutants (total volatile organic compounds – TVOCs, CO2, and O3) and comfort parameters (temperature – T, relative humidity – RH) in different functional spaces of health clubs (n = 8), under specific occupancy and ventilation restrictions.Results and DiscussionIn all HCs human occupancy resulted in elevated particles (up to 2–3 times than those previously reported), considering mass concentrations (PM10: 1.9–988.5 μg/m3 PM2.5: 1.6–479.3 μg/m3) and number (PNC 1.23 × 103 – 9.14 × 104 #/cm3). Coarse and fine PM indicated a common origin (rs = 0.888–0.909), while PNC showed low–moderate associations with particle mass (rs = 0.264–0.629). In addition, up to twice-higher PM and PNC were detected in cardiofitness & bodybuilding (C&B) areas as these spaces were the most frequented, reinforcing the impacts of occupational activities. In all HCs, TVOCs (0.01–39.67 mg/m3) highly exceeded the existent protection thresholds (1.6–8.9 times) due to the frequent use of cleaning products and disinfectants (2–28 times higher than in previous works). On contrary to PM and PNC, TVOCs were higher (1.1–4.2 times) in studios than in C&B areas, due to the limited ventilations combined with the smaller room areas/volumes. The occupancy restrictions also led to reduced CO2 (122–6,914 mg/m3) than previously observed, with the lowest values in HCs with natural airing. Finally, the specific recommendations for RH and T in sport facilities were largely unmet thus emphasizing the need of proper ventilation procedures in these spaces.

Keywords

particulate matter, particle number concentration, Air Pollutants, Ciências do ambiente, Ciências da Saúde, comfort parameters, gaseous pollutants, indoor air, Carbon Dioxide, Fitness Centers, Air Pollution, Indoor, Humans, Particulate Matter, Environmental Pollutants, Public Health, Gases, Public aspects of medicine, RA1-1270, Environmental science, Health sciences, health clubs, Environmental Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold