Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.4230/lipics...
Article . 2022
License: CC BY
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete & Computational Geometry
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Erdős–Szekeres-Type Problems in the Real Projective Plane

Erdős-Szekeres-type problems in the real projective plane
Authors: Balko, Martin; Scheucher, Manfred; Valtr, Pavel;

Erdős–Szekeres-Type Problems in the Real Projective Plane

Abstract

We consider point sets in the real projective plane $\mathbb{R}P^2$ and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős--Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős--Szekeres theorem about point sets in convex position in $\mathbb{R}P^2$, which was initiated by Harborth and Möller in 1994. The notion of convex position in $\mathbb{R}P^2$ agrees with the definition of convex sets introduced by Steinitz in 1913. For $k \geq 3$, an (\affine) $k$-hole in a finite set $S \subseteq \mathbb{R}^2$ is a set of $k$ points from $S$ in convex position with no point of $S$ in the interior of their convex hull. After introducing a new notion of $k$-holes for points sets from $\mathbb{R}P^2$, called projective $k$-holes, we find arbitrarily large finite sets of points from $\mathbb{R}P^2$ with no \projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many \projective $k$-holes for $k \leq 7$. On the other hand, we show that the number of $k$-holes can be substantially larger in~$\mathbb{R}P^2$ than in $\mathbb{R}^2$ by constructing, for every $k \in \{3,\dots,6\}$, sets of $n$ points from $\mathbb{R}^2 \subset \mathbb{R}P^2$ with $Ω(n^{3-3/5k})$ \projective $k$-holes and only $O(n^2)$ \affine $k$-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in $\mathbb{R}P^2$ and about some algorithmic aspects. The study of extremal problems about point sets in $\mathbb{R}P^2$ opens a new area of research, which we support by posing several open problems.

The extended abstract appeared at the 38th International Symposium on Computational Geometry (SoCG 2022)

Country
Germany
Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Theory of computation → Computational geometry, hole, Erdős problems and related topics of discrete geometry, 510, k-gon, Planar arrangements of lines and pseudolines (aspects of discrete geometry), FOS: Mathematics, random point set, projective plane, Erdős-Szekeres theorem, Horton set, real projective plane, Information systems → Data structures, Erdős-Szekeres-type problems, Mathematics of computing → Combinatorics, Arrangements of points, flats, hyperplanes (aspects of discrete geometry), 004, convex position, k-hole, point set, Theory of computation → Randomness, geometry and discrete structures, Mathematics of computing → Probability and statistics, Combinatorics (math.CO), ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green