Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Problems of mechanic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of mechanical engineering
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Problems of mechanical engineering
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metal Hydride Technology of Hydrogen Activation

Authors: V. Solovei; A. Avramenko; A. Lievtierov; K. Umerenkova;

Metal Hydride Technology of Hydrogen Activation

Abstract

The effect of hydrogen activation by metal hydrides is considered. It is established that activated hydrogen exists in different forms: in the form of excited H2 molecules, excited hydrogen atoms and positive ions. To study the activation of hydrogen, various methods of mass spectrometry were used. The reasons for the formation of activated hydrogen in interaction with hydride-forming materials are discussed. For hydride-forming materials, one of the possible factors leading to the activation of hydrogen followed by desorption into the gas phase is isobaric hysteresis. Hysteresis in metal-hydrogen systems occurs when the pressure of hydride formation is higher than the pressure of its decomposition. The use of the phenomenon of metal hydride activation can improve the energy characteristics of virtually all types of energy-converting devices using hydrogen as a working fluid. This effect can be used in reactions of heterogeneous catalysis, in particular, in the ignition of hydrogen-oxygen mixtures, in devices using hydrogen as a working medium, as an environmentally friendly energy carrier in engines or in power and electro-physical facilities. It is shown both experimentally and theoretically that the use of atoms and excited hydrogen molecules as an activation ionic additive to traditional fuels leads not only to saving the latter but also to reducing the content of toxic products in the exhaust gases. A small (0.5 %) admixture of atomic hydrogen in the combustion zone is just as effective as the addition of 10 – 12 % of ordinary molecular hydrogen. The use of excitation energy for nonequilibrium states of hydrogen appears to be one of the most promising ways to solve the problem of increasing the efficiency of energy equipment and improving its environmental characteristics.

Keywords

UDC 662.769.21; 544-971; 54-19, водень; металогідрид; активація; мас-спектрометрія; газовий розряд, hydrogen; metal hydride; atomic hydrogen emission; activation; mass spectrometry; gas discharge, УДК 662.769.21; 544-971; 54-19, водород; металлогидрид; активация; масс-спектрометрия; газовый разряд

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold