
This work presents the optimization of a wind-solar-diesel system with battery storage for a continuous and reliable production of electrical energy. In this context, detailed mathematical modeling of the present system and its operation algorithm has been presented. The objective function of the system is to minimize its cost of energy (CoE) which estimates the average lifetime cost of power production per kWh. The cost elements comprising the CoE include investment costs, fuel costs, and operation and maintenance costs. The optimization is performed in the HOMER software in addition to three metaheuristic optimization techniques namely the Cuckoo Search algorithm (CS), the BAT algorithm (BA) and the Firefly algorithm (FA). The simulations conducted in this paper are based on meteorological data collected from an installation in Bouzareah. Simulation results show the excellent properties and superiority of the CS optimization method compared to HOMER, BA and FA algorithms and demonstrate the feasibility of the proposed hybrid PV-wind-diesel-battery system in Bouzareah.
homer, coe, TJ807-830, optimization, metaheuristics algorithms, Renewable energy sources, hybrid energy system
homer, coe, TJ807-830, optimization, metaheuristics algorithms, Renewable energy sources, hybrid energy system
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
