Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Computational Methods in Engineering
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems

Authors: Panagant, N; Pholdee, N; Bureerat, S; Yildiz, AR; Mirjalili, S;

A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems

Abstract

Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history–based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.

Keywords

Engineering, Mathematical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 1%
Top 10%
Top 1%
Green