Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optimization and Eng...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Optimization and Engineering
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compound optimal design of experiments – Semidefinite Programming formulations

Authors: Duarte, Belmiro P.M.; Atkinson, Anthony C.; Oliveira, Nuno M.C;

Compound optimal design of experiments – Semidefinite Programming formulations

Abstract

Abstract An optimal experimental design represents a structured approach to collecting data with the aim of maximizing the information gleaned. Achieving this requires defining an optimality criterion tailored to the specific model under consideration and the purpose of the investigation. However, it is often observed that a design optimized for one criterion may not perform optimally when applied to another. To mitigate this, one strategy involves employing compound designs. These designs balance multiple criteria to create robust experimental plans that are versatile across different applications. In our study, we systematically tackle the challenge of constructing compound approximate optimal experimental designs using Semidefinite Programming. We focus on discretized design spaces, with the objective function being the geometric or the arithmetic mean of design efficiencies relative to individual criteria. We address two combinations of two criteria: concave-concave (illustrated by DE–optimality) and convex-concave (such as DA–optimality). To handle the latter, we reformulate the problem as a bilevel problem. Here, the outer problem is solved using Surrogate Based Optimization, while the inner problem is addressed with a Semidefinite Programming solver. We demonstrate our formulations using both linear and nonlinear models (for the response) of the Beta class, previously linearized to facilitate analysis and comparison.

Related Organizations
Keywords

compound optimal designs, concave-concave criteria, convex-concave criteria, semidefinite programming, surrogate based optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities