Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Conference object . 2020
Data sources: HAL-CEA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SIMD-based Exact Parallel Fuzzy Dilation Operator for Fast Computing of Fuzzy Spatial Relations

Authors: Pierrard, Régis; Cabaret, Laurent; Poli, Jean-Philippe; Hudelot, Céline;

SIMD-based Exact Parallel Fuzzy Dilation Operator for Fast Computing of Fuzzy Spatial Relations

Abstract

For decades, fuzzy spatial relations have demonstrated their utility and effectiveness for visual reasoning, including semantic annotation and object recognition. However, a major issue is that they often involve fuzzy morphological operators that are compute-intensive leading to long latency in the relation evaluation. As a result, approximate methods have been proposed to compute some relations in an acceptable time, but they are not as generic as the fuzzy dilation or do not make the most of modern computing architectures. In this paper, we introduce the Reverse and the Parallel Reverse (PR) algorithms. Reverse is an exact and efficient algorithm for the fuzzy dilation operator and PR combines the Reverse algorithm exactness with efficient usage of modern-processor multiple cores using OpenMP. Using SIMD extensions to enhance Parallel Reverse, PR128 (AVX), PR256 (AVX2), and PR512 (AVX512) are faster than the state-of-the-art approximate methods while remaining generic and exact. To demonstrate the performance of PR and highlight the contribution of the SIMD instructions, an extensive benchmark was carried out on two datasets of natural and artificial images.

Keywords

Reverse algorithm, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], machine learning, fuzzy dilation, online learning, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Parallel Reverse algorithm, fuzzy logic, artificial intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green