Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubliCattarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Intensive Care Medicine
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2024
License: CC BY NC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The predictive value of highly malignant EEG patterns after cardiac arrest: evaluation of the ERC-ESICM recommendations

evaluation of the ERC-ESICM recommendations
Authors: Turella, Sara; Dankiewicz, Josef; Friberg, Hans; Jakobsen, Janus Christian; Leithner, Christoph; Levin, Helena; Lilja, Gisela; +193 Authors

The predictive value of highly malignant EEG patterns after cardiac arrest: evaluation of the ERC-ESICM recommendations

Abstract

The 2021 guidelines endorsed by the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) recommend using highly malignant electroencephalogram (EEG) patterns (HMEP; suppression or burst-suppression) at > 24 h after cardiac arrest (CA) in combination with at least one other concordant predictor to prognosticate poor neurological outcome. We evaluated the prognostic accuracy of HMEP in a large multicentre cohort and investigated the added value of absent EEG reactivity.This is a pre-planned prognostic substudy of the Targeted Temperature Management trial 2. The presence of HMEP and background reactivity to external stimuli on EEG recorded > 24 h after CA was prospectively reported. Poor outcome was measured at 6 months and defined as a modified Rankin Scale score of 4-6. Prognostication was multimodal, and withdrawal of life-sustaining therapy (WLST) was not allowed before 96 h after CA.845 patients at 59 sites were included. Of these, 579 (69%) had poor outcome, including 304 (36%) with WLST due to poor neurological prognosis. EEG was recorded at a median of 71 h (interquartile range [IQR] 52-93) after CA. HMEP at > 24 h from CA had 50% [95% confidence interval [CI] 46-54] sensitivity and 93% [90-96] specificity to predict poor outcome. Specificity was similar (93%) in 541 patients without WLST. When HMEP were unreactive, specificity improved to 97% [94-99] (p = 0.008).The specificity of the ERC-ESICM-recommended EEG patterns for predicting poor outcome after CA exceeds 90% but is lower than in previous studies, suggesting that large-scale implementation may reduce their accuracy. Combining HMEP with an unreactive EEG background significantly improved specificity. As in other prognostication studies, a self-fulfilling prophecy bias may have contributed to observed results.

Countries
Switzerland, Italy, Denmark, Denmark
Keywords

Heart Arrest/diagnosis, Critical Care, Original, Electroencephalography/methods, 610 Medicine & health, Hypothermia, Brain injury; Cardiac arrest; Coma; EEG; Outcome; Prognosis, Hypothermia, Induced, Humans, Multicenter Studies as Topic, Outcome ; Electroencephalography/methods [MeSH] ; Humans [MeSH] ; Hypothermia, Induced/methods [MeSH] ; Cardiac arrest ; Multicenter Studies as Topic [MeSH] ; Prognosis ; EEG ; Original ; Critical Care [MeSH] ; Heart Arrest/diagnosis [MeSH] ; Clinical Trials as Topic [MeSH] ; Prognosis [MeSH] ; Brain injury ; Heart Arrest/therapy [MeSH] ; Coma ; Cardiopulmonary Resuscitation/methods [MeSH], Eeg, EEG, Brain injury, Coma, Outcome, Clinical Trials as Topic, Electroencephalography, Cardiac arrest, Prognosis, Cardiopulmonary Resuscitation, Heart Arrest, Induced/methods, Cardiopulmonary Resuscitation/methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
hybrid