Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Knowledge Engineering Review
Article . 2011 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A unifying framework for iterative approximate best-response algorithms for distributed constraint optimization problems

Authors: Chapman, A; Rogers, A; Jennings, NR; Leslie, D;

A unifying framework for iterative approximate best-response algorithms for distributed constraint optimization problems

Abstract

AbstractDistributed constraint optimization problems (DCOPs) are important in many areas of computer science and optimization. In a DCOP, each variable is controlled by one of many autonomous agents, who together have the joint goal of maximizing a global objective function. A wide variety of techniques have been explored to solve such problems, and here we focus on one of the main families, namely iterative approximate best-response algorithms used as local search algorithms for DCOPs. We define these algorithms as those in which, at each iteration, agents communicate only the states of the variables under their control to their neighbours on the constraint graph, and that reason about their next state based on the messages received from their neighbours. These algorithms include the distributed stochastic algorithm and stochastic coordination algorithms, the maximum-gain messaging algorithms, the families of fictitious play and adaptive play algorithms, and algorithms that use regret-based heuristics. This family of algorithms is commonly employed in real-world systems, as they can be used in domains where communication is difficult or costly, where it is appropriate to trade timeliness off against optimality, or where hardware limitations render complete or more computationally intensive algorithms unusable. However, until now, no overarching framework has existed for analyzing this broad family of algorithms, resulting in similar and overlapping work being published independently in several different literatures. The main contribution of this paper, then, is the development of a unified analytical framework for studying such algorithms. This framework is built on our insight that when formulated as non-cooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of iterative approximate best-response algorithms developed in the computer science literature using game-theoretic methods (which also shows that such algorithms can also be applied to the more general problem of finding Nash equilibria in potential games), and, conversely, also allows us to show that many game-theoretic algorithms can be used to solve DCOPs. By so doing, our framework can assist system designers by making the pros and cons of, and the synergies between, the various iterative approximate best-response DCOP algorithm components clear.

Keywords

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE, Technology, 0801 Artificial Intelligence And Image Processing, BREAKOUT, GAMES, Computer Science, Artificial Intelligence, 510, Power-Control, STOCHASTIC APPROXIMATIONS, Artificial Intelligence, CONVERGENCE, Artificial Intelligence & Image Processing, Stochastic Approximations, COORDINATION, Science & Technology, POWER-CONTROL, FICTITIOUS PLAY, 006, 1702 Cognitive Science, 004, DIFFERENTIAL-INCLUSIONS, SENSOR NETWORKS, Computer Science, Breakout

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Green
bronze