Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid Neural Coding Approach for Pattern Recognition With Spiking Neural Networks

Authors: Xinyi Chen; Qu Yang; Jibin Wu; Haizhou Li 0001; Kay Chen Tan;

A Hybrid Neural Coding Approach for Pattern Recognition With Spiking Neural Networks

Abstract

Recently, brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks. However, these SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation. Given that each neural coding scheme possesses its own merits and drawbacks, these SNNs encounter challenges in achieving optimal performance such as accuracy, response time, efficiency, and robustness, all of which are crucial for practical applications. In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes. As an initial exploration in this direction, we propose a hybrid neural coding and learning framework, which encompasses a neural coding zoo with diverse neural coding schemes discovered in neuroscience. Additionally, it incorporates a flexible neural coding assignment strategy to accommodate task-specific requirements, along with novel layer-wise learning methods to effectively implement hybrid coding SNNs. We demonstrate the superiority of the proposed framework on image classification and sound localization tasks. Specifically, the proposed hybrid coding SNNs achieve comparable accuracy to state-of-the-art SNNs, while exhibiting significantly reduced inference latency and energy consumption, as well as high noise robustness. This study yields valuable insights into hybrid neural coding designs, paving the way for developing high-performance neuromorphic systems.

Countries
China (People's Republic of), Hong Kong
Keywords

FOS: Computer and information sciences, 570, Hybrid neural coding and learning framework, Layer-wise learning, Neuromorphic computing, Spiking neural network, Neural coding, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green