Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Engin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Engineering
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2019
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FCM Clustering‐ANFIS‐based PV and wind generation forecasting agent for energy management in a smart microgrid

Authors: A Sujil; Rajesh Kumar; Ramesh C Bansal;

FCM Clustering‐ANFIS‐based PV and wind generation forecasting agent for energy management in a smart microgrid

Abstract

This paper proposes a PV and wind output power generation forecasting agent for a multi‐agent‐based energy management system (EMS) in a smart microgrid. The microgrid EMS requires both generation forecast and load forecast to provide effective dispatch strategies. The efficiency of the EMS significantly relies on its forecasting accuracy. Firstly, this paper develops an adaptive neuro‐fuzzy inference system (ANFIS)‐based forecasting model and then utilise it for the development of wind and PV generation forecasting agent for microgrid energy management. ANFIS adopt the self‐learning capability from the neural network and linguistic expression function from fuzzy logic inference and stands at the top of both the technologies in performance. The proposed model has been tested using two data sets, i.e., PV historical data and historical wind data. The fuzzy c means clustering (FCM) with hybrid optimisation algorithm‐based ANFIS model shows better forecasting accuracy with both PV and wind forecast, therefore, implemented as PV and wind forecasting agent for microgrid EMS.

Related Organizations
Keywords

fuzzy logic inference, inference mechanisms, optimisation, neural network, load forecasting, pattern clustering, wind power plants, fcm clustering-anfis, historical wind data, load forecast, multiagent-based energy management system, distributed power generation, linguistic expression function, smart microgrid, fuzzy set theory, forecasting accuracy, energy management systems, microgrid ems, multi-agent systems, microgrid energy management, wind output power generation forecasting agent, pv generation forecasting agent, fuzzy c means clustering, power engineering computing, photovoltaic power systems, effective dispatch strategies, hybrid optimisation algorithm-based anfis model, pv historical data, adaptive neuro-fuzzy inference system, adaptive systems, fuzzy reasoning, Engineering (General). Civil engineering (General), neural nets, learning (artificial intelligence), fuzzy logic, TA1-2040

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold