Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/smartg...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle-to-Grid Energy Management

Authors: Fonseca, Tiago; Ferreira, Luis; Cabral, Bernardo; Severino, Ricardo; Praca, Isabel;

EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle-to-Grid Energy Management

Abstract

This paper investigates the increasing roles of Renewable Energy Sources (RES) and Electric Vehicles (EVs). While indicating a new era of sustainable energy, these also introduce complex challenges, including the need to balance supply and demand and smooth peak consumptions amidst rising EV adoption rates. Addressing these challenges requires innovative solutions such as Demand Response (DR), energy flexibility management, Renewable Energy Communities (RECs), and more specifically for EVs, Vehicle-to-Grid (V2G). However, existing V2G approaches often fall short in real-world adaptability, global REC optimization with other flexible assets, scalability, and user engagement. To bridge this gap, this paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework, leveraging the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. EnergAIze enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives, thus encouraging engagement. Additionally, it architects' data protection and ownership through decentralized computing, where each prosumer can situate an energy management optimization node directly at their own dwelling. The local node not only manages local energy assets but also fosters REC wide optimization. The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework. These simulations were instrumental in demonstrating EnergAIze's adeptness at implementing V2G technology within a REC and other energy assets. The results show reduction in peak loads, ramping, carbon emissions, and electricity costs at the REC level while optimizing for individual prosumers objectives.

6 pages, 6 figures, 2 tables

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Multiagent Systems, Multiagent Systems (cs.MA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green