Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The study on transient performance improvement of position sensorless control algorithm for IPMSM

Authors: Dongwoo Lee; Kan Akatsu;

The study on transient performance improvement of position sensorless control algorithm for IPMSM

Abstract

This paper presents a study of the transient performance of the speed and position sensorless control of an interior permanent magnet synchronous motor (IPMSM) based on back-electromotive force (back-EMF) estimation method in the rotor reference frame. The fundamental characteristics of the estimated back-EMF, position and speed components using mathematical models of the IPMSM are analyzed. The analyzed sensorless control has back-EMF estimator, rotor position estimator such as a phase-lock-loop (PLL) type estimator, and disturbance observer. To improve the transient stability, the selection methods of major factors such as for sensorless control algorithm and the angle compensation method using a current feedback control are introduced. The dynamic performance of the proposed strategy in transient state is verified through simulation and experimental results.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!