Downloads provided by UsageCounts
During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.
Informal education, FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning challenge, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], :Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC], Computer Science - Artificial Intelligence, Xarxes d', Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Network AI, AI for Computer Networks, Machine Learning (cs.LG), Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors, Computer Science - Networking and Internet Architecture, Computing methodologies → Artificial intelligence, Machine learning, Aprenentatge automàtic, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Social and professional topics → Computer science education, Graph Neural Networks, Computer networks, Non-Formal Education, Networking and Internet Architecture (cs.NI), Networks → Network performance evaluation, Computer Science - General Literature, General Literature (cs.GL), Ordinadors, Graph neural networks, Artificial Intelligence (cs.AI), Ordinadors, Xarxes d'
Informal education, FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning challenge, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], :Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC], Computer Science - Artificial Intelligence, Xarxes d', Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Network AI, AI for Computer Networks, Machine Learning (cs.LG), Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors, Computer Science - Networking and Internet Architecture, Computing methodologies → Artificial intelligence, Machine learning, Aprenentatge automàtic, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Social and professional topics → Computer science education, Graph Neural Networks, Computer networks, Non-Formal Education, Networking and Internet Architecture (cs.NI), Networks → Network performance evaluation, Computer Science - General Literature, General Literature (cs.GL), Ordinadors, Graph neural networks, Artificial Intelligence (cs.AI), Ordinadors, Xarxes d'
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 66 | |
| downloads | 70 |

Views provided by UsageCounts
Downloads provided by UsageCounts