
Conventional Public Transport (PT) is based on fixed lines, running with routes and schedules determined a-priori. In low-demand areas, conventional PT is inefficient. Therein, Mobility on Demand (MoD) could serve users more efficiently and with an improved quality of service (QoS). The idea of integrating MoD into PT is therefore abundantly discussed by researchers and practitioners, mainly in the form of adding MoD on top of PT. Efficiency can be instead gained if also conventional PT lines are redesigned after integrating MoD in the first or last mile. In this paper we focus on this re-design problem. We devise a bilevel optimization problem where, given a certain initial design, the upper level determines stop selection and frequency settings, while the lower level routes a fleet of MoD vehicles. We propose a solution method based on Particle Swarm Optimization (PSO) for the upper level, while we adopt Large Neighborhood Search (LNS) in the lower level. Our solution method is computationally efficient and we test it in simulations with up to 10k travel requests. Results show important operational cost savings obtained via appropriately reducing the conventional PT coverage after integrating MoD, while preserving QoS.
26th Euro Working Group on Transportation Meeting
Public Transportation, Mobility-on-demand, Transport Network Design, FOS: Electrical engineering, electronic engineering, information engineering, Routing Algorithms, Systems and Control (eess.SY), Ride-sharing, Mobility as a Service (MaaS), Electrical Engineering and Systems Science - Systems and Control, Multi-modal Routes
Public Transportation, Mobility-on-demand, Transport Network Design, FOS: Electrical engineering, electronic engineering, information engineering, Routing Algorithms, Systems and Control (eess.SY), Ride-sharing, Mobility as a Service (MaaS), Electrical Engineering and Systems Science - Systems and Control, Multi-modal Routes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
