Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.eg...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties

Authors: Premkumar, M.; Sowmya, R.; Ramakrishnan, C.; Jangir, Pradeep; Houssein, Essam H.; Deb, Sanchari; Manoj Kumar, Nallapaneni;

An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties

Abstract

The use of an electrical energy storage system (EESS) in a microgrid (MG) is widely recognized as a feasible method for mitigating the unpredictability and stochastic nature of sustainable distributed generators and other intermittent energy sources. The battery energy storage (BES) system is the most effective of the several power storage methods available today. The unit commitment (UC) determines the number of dedicated dispatchable distributed generators, respective power, the amount of energy transferred to and absorbed from the microgrid, as well as the power and influence of EESSs, among other factors. The BES deterioration is considered in the UC conceptualization, and an enhanced mixed particle swarm optimizer (EMPSO) is suggested to solve UC in MGs with EESS. Compared to the traditional PSO, the acceleration constants in EMPSO are exponentially adapted, and the inertial weight in EMPSO decreases linearly during each iteration. The proposed EMPSO is a mixed integer optimization algorithm that can handle continuous, binary, and integer variables. A part of the decision variables in EMPSO is transformed into a binary variable by introducing the quadratic transfer function (TF). This paper also considers the uncertainties in renewable power generation, load demand, and electricity market prices. In addition, a case study with a multiobjective optimization function with MG operating cost and BES deterioration defines the additional UC problem discussed in this paper. The transformation of a single-objective model into a multiobjective optimization model is carried out using the weighted sum approach, and the impacts of different weights on the operating cost and lifespan of the BES are also analyzed. The performance of the EMPSO with quadratic TF (EMPSO-Q) is compared with EMPSO with V-shaped TF (EMPSO-V), EMPSO with S-shaped TF (EMPSO-S), and PSO with S-shaped TF (PSO-S). The performance of EMPSO-Q is 15%, 35%, and 45% better than EMPSO-V, EMPSO-S, and PSO-S, respectively. In addition, when uncertainties are considered, the operating cost falls from $8729.87 to $8986.98. Considering BES deterioration, the BES lifespan improves from 350 to 590, and the operating cost increases from $8729.87 to $8917.7. Therefore, the obtained results prove that the EMPSO-Q algorithm could effectively and efficiently handle the UC problem.

Keywords

Mixed integer algorithm, Battery energy storage, Electrical engineering. Electronics. Nuclear engineering, Microgrids, Uncertainties, Particle swarm optimizer, Unit commitment, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 1%
gold