Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unified Geometric Multigrid Algorithm for Hybridized High-Order Finite Element Methods

Unified geometric multigrid algorithm for hybridized High-order finite element methods
Authors: Wildey, Tim; Muralikrishnan, Sriramkrishnan; Bui-Thanh, Tan;

Unified Geometric Multigrid Algorithm for Hybridized High-Order Finite Element Methods

Abstract

We consider a standard elliptic partial differential equation and propose a geometric multigrid algorithm based on Dirichlet-to-Neumann (DtN) maps for hybridized high-order finite element methods. The proposed unified approach is applicable to any locally conservative hybridized finite element method including multinumerics with different hybridized methods in different parts of the domain. For these methods, the linear system involves only the unknowns residing on the mesh skeleton, and constructing intergrid transfer operators is therefore not trivial. The key to our geometric multigrid algorithm is the physics-based energy-preserving intergrid transfer operators which depend only on the fine scale DtN maps. Thanks to these operators, we completely avoid upscaling of parameters and no information regarding subgrid physics is explicitly required on coarse meshes. Moreover, our algorithm is agglomeration-based and can straightforwardly handle unstructured meshes. We perform extensive numerical studies with hybridized mixed methods, hybridized discontinuous Galerkin method, weak Galerkin method, and a hybridized version of interior penalty discontinuous Galerkin methods on a range of elliptic problems including subsurface flow through highly heterogeneous porous media. We compare the performance of different smoothers and analyze the effect of stabilization parameters on the scalability of the multigrid algorithm.

Keywords

Iterative numerical methods for linear systems, Multigrid methods; domain decomposition for boundary value problems involving PDEs, hybridized methods, Numerical Analysis (math.NA), Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Numerical solution of discretized equations for boundary value problems involving PDEs, Stability and convergence of numerical methods for boundary value problems involving PDEs, geometric multigrid, Dirichlet-to-Neumann maps, high-order, FOS: Mathematics, multinumerics, Mathematics - Numerical Analysis, iterative solvers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
bronze