
doi: 10.1145/3309703
Data synchronization is crucial in ubiquitous computing systems, where heterogeneous sensor devices, modalities, and different communication capabilities and protocols are the norm. A common notion of time among devices is required to make sense of their sensing data. Traditional synchronization methods rely on wireless communication between devices to synchronize, potentially incurring computational and power costs. Furthermore, they are unsuitable for synchronizing data streams that have already been collected. We present CRONOS: a post-hoc, data-driven framework for sensor data synchronization for wearable and Internet-of-Things devices that takes advantage of independent, omni-present motion events in the data streams of two or more sensors. Experimental results on pairwise and multi-sensor synchronization show a drift improvement as high as 98% and a mean absolute synchronization error of approximately 6ms for multi-sensor synchronization with sensors sampling at 100Hz.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
