Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Numerische Mathemati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Numerische Mathematik
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quotienten-Differenzen-Algorithmus: Beweis der Regeln von Rutishauser

Authors: Seewald, Wolfgang;

Quotienten-Differenzen-Algorithmus: Beweis der Regeln von Rutishauser

Abstract

The Quotient-Difference Algorithm of Rutishauser can be used for the determination of poles of a meromorphic function given by its power series. If some of the poles have same modulus, a sequence of polynomials can be determined such that the limiting polynomial has exactly these poles as zeros. The convergence has not been proved by Rutishauser, however. A proof is presented in this paper. Der Quotienten-Differenzen-Algorithmus nach Rutishauser ist geeignet zur Bestimmung von Polen meromorpher Funktionen, gegeben durch eine Taylorreihe. Sind mehrere Pole betragsgleich, so kann eine Polynomfolge bestimmt werden, deren Grenzpolynom diese Pole als Nullstellen hat. Die Konvergenz wurde von Rutishauser jedoch nicht bewiesen. Ein Beweis wird in der vorliegenden Arbeit prasentiert.

Related Organizations
Keywords

sequence of polynomials, General theory of numerical methods in complex analysis (potential theory, etc.), poles of a meromorphic function, convergence, Algorithms for approximation of functions, quotient-difference algorithm, Approximation in the complex plane, Meromorphic functions of one complex variable (general theory)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!