Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rate-Distortion Driven Decomposition of Multiview Imagery to Diffuse and Specular Components

Authors: Haghighat, M; Mathew, R; Taubman, D;

Rate-Distortion Driven Decomposition of Multiview Imagery to Diffuse and Specular Components

Abstract

In this work, we propose an overcomplete representation of multiview imagery for the purpose of compression. We present a rate-distortion (R-D) driven approach to decompose multiview datasets into two additive parts which can be interpreted as diffuse and specular content. We choose distinct and different sparsifying transforms for the diffuse and specular components and employ an R-D inspired measure as our optimization cost function to drive the decomposition based solely on compressibility. We first describe a framework which performs data separation in a registered domain to avoid the complexity of warping between views. Then a more comprehensive approach is proposed to separate specular data progressively from coordinates of multiple reference views. Experimental results show a coding gain of up to 0.6 dB for synthetic datasets and up to 0.9 dB for real datasets.

Country
Australia
Related Organizations
Keywords

anzsrc-for: 1702 Cognitive Sciences, diffuse, Overcomplete decomposition, 330, anzsrc-for: 46 Information and Computing Sciences, multiview, anzsrc-for: 4607 Graphics, 4603 Computer Vision and Multimedia Computation, anzsrc-for: 4603 Computer Vision and Multimedia Computation, 004, 46 Information and Computing Sciences, augmented reality and games, rate-distortion optimization, specular, anzsrc-for: 0801 Artificial Intelligence and Image Processing, anzsrc-for: 0906 Electrical and Electronic Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green